太陽能發電是把陽光轉換成電能,可直接使用太陽能光伏(PV),或間接使用聚光太陽能熱發電(CSP)。聚光太陽能熱發電系統會使用透鏡或反射鏡和跟蹤系統將大面積的陽光聚焦成一個小束,並利用光電效應將光伏光轉換成電流。
拋物線槽型
拋物線槽型的聚光鏡是由把反射光集中到焦線的一個接收器的拋物線反射鏡組成。接收器是在拋物面反射鏡的中間正上方的一個管子,並且管子中充滿了的工作流體。反射鏡通過沿單軸在白天跟蹤太陽。在流經接收器時,工作流體(例如,熔鹽[6])被加熱到150-350℃(423~623 K(302~662 °F)),然後將其用作發電系統用的熱源。[7]拋物線槽型系統是最發達的CSP技術。在加利福尼亞州太陽能發電系統(SEGS)廠,世界上第一個商業的拋物線槽型發電廠,Acciona公司在內華達州博爾德市附近的內華達太陽能一廠,和安達索爾太陽能電站,歐洲第一個商業拋物線槽型發電廠都是代表,還有在西班牙阿爾梅利亞的SSPS-DCS的測試設備Plataforma太陽能
斯特林碟型
聚光太陽能熱發電(CSP)-斯特林已知具有在所有太陽能技術中最高的效率(30%左右,相對於太陽能光伏PV的約15%),以及被預測為能生產高規模化生產的所有的可再生能源中最便宜的能量和在炎熱地區,半沙漠等。蝶式系統利用大型拋物線曲面聚光反射鏡(形狀與衛星電視碟相似),將入射陽光聚集在焦點處,在那裡一個接收器捕捉熱量並將其轉換成有用的形式。通常是碟與斯特林發動機被耦合在一個斯特林碟形系統,但有時蒸汽機也被使用。[9]這些產生旋轉動能,可使用發電機轉換為電能。
聚光線性菲涅爾反射鏡型
菲涅耳反射器是由許多薄的平面鏡條把太陽光集中到管子上,其中管子通過被泵送的工作流體。平面鏡允許在相同的空間中有比一個拋物面反射器量更多的反射面,從而捕獲更多的可用的太陽光,並且它們比拋物面反射器便宜得多。菲涅耳反射器可以用於各種大小的聚光太陽能熱發電。
太陽能發電塔型
塔式太陽能熱發電是採用大量的定向反射鏡將太陽光聚集到一個裝在塔頂的中央熱交換器上,接受器一般可以收集100MW的輻射功率,產生1100°C的高溫。